ALGEBRAIC CURVES EXERCISE SHEET 12

Unless otherwise specified, k is an algebraically closed field.

Exercise 1.

We recall the setting of the Cayley-Bacharach theorem: $F_1, F_2 \subseteq \mathbb{P}^2_k$ are two plane projective cubics intersecting cubics intersecting in 9 pairwise distinct points $A_i \in \mathbb{P}^2_k$, $1 \le i \le 9$ and G is another cubic containing A_i , $1 \le i \le 8$. Show that no 6 points among $\{A_i, 1 \le i \le 8\}$ lie on a quadric, unless G is a linear combination of F_1, F_2 .

Exercise 2.

Let $A_1, A_2, A_3, B_1, B_2, B_3$ be pairwise distinct points on an irreducible plane projective quadric $Q \subseteq \mathbb{P}^2_k$. For $(i, j) \in \{(1, 2), (2, 3), (3, 1)\}$, denote by C_{ij} the intersection point of lines $\overline{A_iB_j}$ and $\overline{A_jB_i}$ (show that these lines intersect in exactly one point). Show that C_{12}, C_{23}, C_{31} are collinear. This result is known as Pascal's theorem.

Exercise 3.

Let (E, O) be an elliptic curve.

- (1) Show that the addition defined in class has neutral element O and that any point $P \in E$ has a (unique) inverse -P (you may assume associativity of + to prove uniqueness of the inverse).
- (2) Show that + is commutative.

If we further assume that + is associative, (E, +, O) is an abelian group. Consider $O \neq O' \in E$ and $Q = \varphi(O, O')$. We define $\alpha : E \to E$ by $\alpha(P) = \varphi(Q, P)$.

- (3) Show that for $P_1, P_2 \in (E, +, O), P_1 + P_2 + \varphi(P_1, P_2) = \varphi(O, O).$
- (4) Show that $\alpha: (E, +, O) \to (E, +, O')$ is a group isomorphism.

Therefore, the group structure on E does not depend on the choice of O.

Exercise 4.

Let E, O be an elliptic curve. We say that an element x in an abelian group (G, +) is p-torsion $(p \in \mathbb{Z})$ if $p \cdot x = \underbrace{x + \ldots + x}_{p \text{ times}} = 0$.

A simple point $P \in E$ with tangent line L is called a flex if $I(P, E \cap L) > 2$. We admit that, if char(k) = 0, any nonsingular cubic has 9 distinct flexes (see Fulton, Problem 5.23). Suppose char(k) = 0 and O is a flex.

- (1) Show that flexes are exactly 3-torsion points of E and that they form a subgroup isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- (2) Let $P \in E$. How many lines through P are tangent to E at some point $P \neq Q \in E$? (Hint: show that P + 2Q = O and use exercise 5.)

Exercise 5.

Let (E, O) be an elliptic curve. Suppose char(k) = 0 and O is a flex (for the definition of flex, see exercise 4).

(1) Show that $P \in E$ is 2-torsion if, and only if, the tangent to E at P passes through O. (See exercise 4 for the definition of torsion points.)

We may assume that $E = Y^2Z - X(X - Z)(X - \lambda Z)$ and $O = [0:1:0] \in E$, where $\lambda \neq 0, 1$ (see Fulton, Problem 5.24).

- (2) Find 2-torsion points of E. Draw a real picture. Show that 2-torsion points of E form a subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- (3) Show that the endomorphism $P \mapsto 2P$ of E is surjective. (Hint: if $2P \neq O$, find an explicit expression for the coordinates of 2P depending on coordinates of P.)